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An inverse-direct method for predicting the vortex-induced vibrations of uniform and nonuni-
form cylinders in uniform and nonuniform #ows is developed. In this method, the #uid force
acting per unit length on a uniform cylinder in a uniform #ow is found by using known
experimental results and inverting the equation of motion of the cylinder. This force is
a function of the response parameter (structural damping divided by the ratio of displaced #uid
mass to structural mass) and the frequency ratio (the ratio of the intrinsic shedding frequency to
the structural natural frequency). The dependence of the #uid force on the frequency ratio is
shown to explain the modal coupling patterns found for taut cables and beams in uniform #ows.
For nonuniform #ows or nonuniform cylinders, the force is applied locally and varies along the
cylinder, depending on the local values of the response parameter and frequency ratio. The
predictions of the inverse-direct method for the vortex-induced vibrations of uniform and
tapered pivoted cylinders in uniform and linearly sheared #ows are compared with experi-
mental data. The general agreement between the predictions and the data is quite good.
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1. INTRODUCTION

OVER THE PAST SEVERAL DECADES, numerous investigators have employed nonlinear oscillator
equations of the van der Pol type to represent the #uctuating lift force produced
on a cylinder by the vortex-shedding process (Hartlen & Currie 1970; Skop & Gri$n 1973;
Iwan & Blevins 1974; Skop & Gri$n 1975; Iwan 1975). This representation for the lift
force was based more on the similarity between the vortex-shedding process and the
behavior of nonlinear oscillators than on the underlying #uid dynamics. The models,
however, did succeed in identifying the response parameter as the controlling factor in
determining the structural response (Skop & Gri$n 1973; Iwan & Blevins 1974). The
response parameter is de"ned, essentially, by the ratio of the structural damping to
the ratio of the displaced #uid to structural masses. The models also succeeded in identify-
ing the modal scaling principle for the structural response (Skop & Gri$n 1975; Iwan 1975).
The modal scaling principle collapses the responses of di!erent-type structures to vortex
shedding to a single curve through a mode shape factor. Many variations of the original
0889}9746/01/060867#18 $35.00/0 ( 2001 Academic Press
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nonlinear oscillator models have since been proposed. Reviews can be found in Parkinson
(1989) and Billah (1989).

More recently, e!orts have been made to extend the nonlinear oscillator models to the
prediction of vortex-induced vibrations of uniform and nonuniform cylinders in uniform
and nonuniform #ows (Bokaian 1994; Triantafyllou et al. 1994; Balasubramanian et al.
2000, 2001). For the most part, these e!orts have generated predictions that are at consider-
able variance from experimental results. Balasubramanian et al. (2000) attribute this to the
oversimpli"cation of the underlying #uid dynamics that is implicit in nonlinear oscillator
models.

In this paper, a new method for predicting the vortex-induced response of cylinders in
uniform and nonuniform #ows is developed. We term the method an inverse-direct method.
In the inverse portion of the method, the equation of motion of a uniform cylinder in
a uniform #ow is inverted and known experimental results are used to determine the #uid
force per unit length acting on the cylinder. Due to the scatter in the data, the calculated
force is, in some sense, a best-"t approximation. The force depends on two variables: the
response parameter and the frequency ratio (the ratio of the intrinsic shedding frequency to
the structural natural frequency).

In the direct portion of the method, the calculated #uid force is applied locally along the
cylinder. We show that the dependency of the force on the frequency ratio provides an
explanation of the modal coupling patterns found experimentally for taut cables and beams
in uniform #ows. For nonuniform #ows or nonuniform cylinders, the force varies along the
cylinder depending on the local values of the response parameter and frequency ratio. The
predictions of the inverse-direct method are compared with experimental data for uniform
and tapered pivoted cylinders in uniform and sheared #ows. The agreement between the
predictions and the data are quite good, especially when account is taken of the scatter in
the data for uniform cylinders in uniform #ows. The predicted peak vibration amplitudes
range from !11% to #25% of the measured ones. The predicted #ow velocities at which
the peak amplitudes occur are within !6% to #20% of the measured #ow velocities. The
main discrepancy between the predictions and the measured data is in the extent of the
lock-in regions, the predicted extents tending to be somewhat wider than the measured
ones.

2. UNIFORM CYLINDERS IN UNIFORM FLOWS

2.1. THE STALL TERM

We take u
S

as the naturally occurring vortex shedding frequency and u
n

as the natural
frequency of a spring-mounted, uniform circular cylinder. The vortex-shedding frequency is
given by

u
S
"

2nS<

D
. (1)

Here, S is the Strouhal number taken as S"0)21, < is the #ow speed and D is the cylinder
diameter. The structural response to the vortex-produced oscillating lift force is governed
by (Skop & Balasubramanian 1997)

d2y

dt2
#2mu

n

dy

dt
#u2

n
y"

o<2

2(m
s
#m

a
) CQ!

2a
u

S
A
u

S
u

n
B
k dy

dtD . (2)

In this equation, t is time and y is the structural displacement referenced to the diameter D.
The mass and added mass of the cylinder, both per unit length, are denoted respectively by
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m
s
and m

a
. The corrected structural-damping ratio m is de"ned by

m"m
sS

m
s

m
s
#m

a

, (3)

where m
s
is the actual structural damping ratio as measured in air. The excitation compon-

ent of the #uctuating lift coe$cient is denoted by Q. The second term in the brackets in
equation (2) is the stall component of the #uctuating lift coe$cient. In this term, the
constant a, designated the stall parameter, and the exponent k, designated the stall
coe$cient, are independent quantities to be determined. The stall component provides that
the magnitude of the #uctuating lift force has a negative slope for large structural motions.
The inclusion of the stall component was "rst suggested by Triantafyllou et al. (1994) based
on lift measurements on mechanically oscillated cylinders. Skop & Balasubramanian (1997)
also included the stall component in a reexamination of nonlinear oscillator models. They
demonstrated that its inclusion provided for a self-limiting structural response at zero
structural damping. As will be shown, the same is true for the indirect}direct method
developed herein. Both Triantafyllou et al. and Skop & Balasubramanian were concerned
with near-resonant conditions, u

S
+u

n
, and the term (u

S
/u

n
)k in the stall component did

not appear in their works. We show now that the term is necessary to provide the correct
asymptotic behavior of equation (2) for large #ow speeds.

Substituting for < in terms of u
S

from equation (1) and letting t"q/u
n

where q is
a dimensionless time, equation (2) becomes

yK#2myR #y"kX2
S
(Q!2aXk~1

S
yR ). (4)

Here, a dot denotes di!erentiation with respect to q. The dimensionless frequency X
S

is
de"ned by X

S
"u

S
/u

n
and the mass ratio parameter k is given by

k"
oD2

8n2S2 (m
s
#m

a
)
. (5)

Far from resonance, experiments show that Q"C
L0

sinX
S
q, where C

L0
is the oscillating lift

coe$cient over a stationary cylinder. Substituting for Q in equation (4) and rearranging
terms, we obtain the equation for the cylinder displacement as

yK#2(m#kaXk`1
S

)yR #y"kX2
S
C

L0
sinX

S
q. (6)

The steady-state solution to this equation is y"A sin(X
S
q#u), where (Thomson 1965)

A"

kX2
S
C

L0
J(1!X2

S
)2#[2(m#kaXk`1

S
)X

S
]2

(7)

and

tan u"

2(m#kaXk`1
S

)X
S

X2
S
!1

(8)

Let us now consider the asymptotic behavior of y, yR and yK for large X
S
; that is, at large <.

The asymptotic behavior is, in turn, given by the asymptotic behavior of A, X
S
A and X2

S
A,

respectively. From equation (7), we then "nd

yJ
1

Xk
S

, yR J
1

Xk~1
S

and yKJ
1

Xk~2
S

. (9a, b, c)



TABLE 1
Asymptotic behavior of the cylinder response for large X

S

k y yR yK

0 Finite In"nite In"nite
1 Zero Finite In"nite
2 Zero Zero Finite
3 Zero Zero Zero
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The asymptotic behavior of the cylinder response is summarized in Table 1 as a function of
k. From Table 1, we see that, for k"0, y and y5 do not go to zero as is observed
experimentally. In fact, yR becomes in"nite for large X

S
. We also observe from Table 1 that

setting k"1 does not resolve the problem since yR remains "nite. For the stall term to
produce correct asymptotic results, we must have k52.

2.2. LOCK-IN

Let us return to equation (2) and write Q as Q"C
L
sinu

f
t, where C

L
is the oscillating lift

coe$cient and u
f

is some forcing frequency. Using the dimensionless time q, equation (2)
then becomes

yK#2(m#kaXk`1
S

)yR #y"kX2
S
C

L
sinX

f
q, (10)

where X
f
"u

f
/u

n
. One of the fundamental features of vortex-induced vibrations is reson-

ant lock-in (Sarpkaya & Isaacson 1981). As the vortex-shedding frequency approaches the
structural natural frequency, the intrinsic vortex-shedding frequency becomes suppressed.
The frequencies of vortex shedding and structural oscillation collapse into a single fre-
quency close to the structural natural frequency, over a range of #ow velocities, and the
structure undergoes resonant vibrations. We de"ne X

S1
as the intrinsic Strouhal shedding

frequency at the beginning of the lock-in range and X
S2

as the intrinsic Strouhal shedding
frequency at the end of the lock-in range. The behavior of the frequency X

f
for all #ow

velocities is then closely approximated by

X
f
"G

X
S

if X
S
(X

S1
or X

S
'X

S2
,

1 if X
S1
4X

S
4X

S2
.

(11)

We note here that Khalak & Williamson (1999) and Gharib (1999) have reported
deviations from classical lock-in for vortex-induced vibrations at small values of 1/k. They
"nd instead that X

f
"X

f
(X

S
, 1/k) if X

S1
4X

S
4X

S2
where, additionally, X

f
(X

S
, 1/k)4X

S
.

Their "ndings can be incorporated into equation (11) if necessary. For most practical
applications, however, 1/k is large enough so that equation (11) is valid.

2.3. MODAL SCALING

Equation (2) can be extended to a uniform elastic cylinder responding purely in its ith mode
to vortex forcing in a uniform #ow. Following the modal-scaling principle (Skop & Gri$n
1975; Iwan 1975), we have for this situation that the structural displacement y (x, t)
referenced to the diameter D is given by

y"C1@2
i

r
i
(t)t

i
(x). (12)
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Here, x is the measure of distance along the cylinder of total length ¸ and t
i
(x) is ith normal

mode of response of the cylinder. The modal response factor for the ith mode is denoted by
r
i
(t) and the modal scaling factor C

i
is de"ned by

C
i
"P

L

0

t2
i
(x) dxNP

L

0

t4
i
(x) dx. (13)

Similarly, the lift force Q(x, t) is written as

Q"C1@2
i

q
i
(t)t

i
(x), (14)

where q
i
(t) is the modal lift factor for the ith mode. Substituting equations (12) and (14)

into (2), then gives the equation of motion for the response of the ith mode in a uniform
#ow as

d2r
i

dt2
#2m

i
u

n,i

dr
i

dt
#u2

n,i
r
i
"

o<2

2(m
s
#m

a
) Cqi!

2a
u

S
A

u
S

u
n,i
B
k dr

i
dtD . (15)

In this equation, u
n,i

is the natural frequency of the ith normal mode and the damping m
i
is

de"ned by

m
i
"m

s,iS
m

s
m

s
#m

a

, (16)

where m
s,i

is the actual structural damping ratio of the ith mode as measured in air.
Substituting for < in terms of u

S
from equation (1) and letting t"q

i
/u

n,i
where q

i
is

a dimensionless time for the ith mode, equation (15) becomes

rK
i
#2(m

i
#kaXk`1

S,i
)rR

i
#r

i
"kX2

S,i
C

L,i
sin X

f,i
q
i
. (17)

Here, a dot denotes di!erentiation with respect to q
i
and the dimensionless frequency X

S,i
is

de"ned by X
S,i
"u

S
/u

n,i
. In arriving at equation (17), we have expressed q

i
(t) as

q
i
"C

L,i
sin u

f
t, where C

L,i
is the oscillating modal lift coe$cient for the ith mode and

where u
f

is again some forcing frequency. The dimensionless forcing frequency X
f,i

is
de"ned by X

f,i
"u

f
/u

n,i
.

2.4. THE FLUID FORCE

Resonant lock-in is also a characteristic feature of the vortex-induced vibrations of an
elastic cylinder responding purely in its ith mode to vortex forcing. Hence, we have that the
behavior of the forcing frequency X

f,i
is closely approximated by

X
f,i

"G
X

S,i
if X

S,i
(X

S1
or X

Si
'X

S2
,

1 if X
S1
4X

S,i
4X

S2
.

(18)

We further de"ne the oscillating modal lift coe$cient C
L,i

for the ith mode as

C
L,i

"G
0 if X

S,i
(X

S1
or X

Si
'X

S2
,

C
L,i

(X
S,i

) if X
S1
4X

S,i
4X

S2
.

(19)

(Note that, strictly, we should have C
L,i
"C

L0
if X

S,i
(X

S1
or X

Si
'X

S2
. However, the

structural response is insigni"cant outside of the resonant lock-in region, so we lose little by
taking C

L,i
"0 there.)
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With equations (18) and (19), the solution to equation (17) for the modal response factor r
i

is found as

r
i
"G

0 if X
S,i
(X

S1
or X

S,i
'X

S2
,

!A
i
cos q

i
if X

S1
4X

S,i
4X

S2
.

(20)

where the modal response amplitude A
i
is given by

A
i
"

X2
S,i

C
L,i

2(S
G,i

#aXk`1
S,i

)
. (21)

In writing equation (21), we have introduced the modal response parameter S
G,i

de"ned by

S
G,i

"

m
i

k
. (22)

Inverting equation (21), C
L,i

is obtained as

C
L,i

"

2(S
G,i

#aXk`1
S,i

)A
i

X2
S,i

. (23)

Hence, C
L,i

can be determined if the behavior of A
i
through the resonant lock-in region is

known.
Bokaian (1994) has examined a large number of vortex-induced vibration experiments for

uniform cylinders in uniform #ows. Though there is substantial scatter in the data due to
di!erences in facilities, aspect ratios, end conditions, etc., he "nds that the behavior of A

i
is

similar for each experiment. Speci"cally, he "nds that A
i
can be approximated by

A
i
"A

.!9,i
H (<

r,i
) . (24)

Here, A
.!9,i

is the maximum value reached by A
i
and H (<

r,i
) is a universal shape function

dependent only on the reduced velocity <
r,i

. The reduced velocity is de"ned by

<
r,i
"

<

f
n,i

D
"

X
S,i
S

, (25)

where the frequency f
n,i

is related to the radial frequency u
n,i

through f
n,i
"u

n,i
/(2n).

Bokaian gives the shape function as

H"(<
r,i
!<

r1
) (<

r,i
!<

r2
) (c<

r,i
#j). (26)

Here,<
r1
"X

S1
/S and<

r2
"X

S2
/S are the reduced velocities at the beginning and end of the

lock-in region, respectively. The coe$cients c and j are de"ned by

c"
<
r1
#<

r2
!2<

rp
(<

r1
!<

rp
)2(<

r2
!<

rp
)2

(27)

and

j"
<
r1
<
r2
!2(<

r1
#<

r2
)<

rp
#3<2

rp
(<

r1
!<

rp
)2 (<

r2
!<

rp
)2

. (28)

In these de"nitions,<
rp

is the reduced velocity at which A
.!9,i

occurs. Although Bokaian did
not mention it, the constraint 3<

rp
!2<

r1
!<

r2
50 must be satis"ed for H(<

r,i
) to remain

positive throughout <
r1

to <
r2

.
Sarpkaya & Isaacson (1981) have discussed the values of <

r1
, <

r2
and <

rp
. Again, there is

substantial scatter in the data. For air, we use <
r1
"5, <

r2
"8 and <

rp
"6. For water, we



Figure 1. The universal shape function H(<
r
) for vortex-excited vibrations. *, for air; } } for water.
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select <
r1
"5, <

r2
"9 and <

rp
"6)5. The universal shape function H (<

r,i
) is plotted in

Figure 1 for both air and water. We note that Khalak & Williamson (1999) have reported
deviations from <

r1
and <

r2
for vortex-induced vibrations at small values of 1/k. They "nd

that these lower and upper lock-in bounds are functions of 1/k. These "ndings can be
incorporated in the selection of <

r1
and <

r2
if necessary.

To complete the determination of C
L,i

, the maximum value A
.!9,i

of the modal response
amplitude must be speci"ed. It has become well established that, within experimental
scatter, A

.!9,i
depends only on the value of the modal response parameter S

G,i
; that is

A
.!9,i

"A
.!9

(S
G,i

) (Skop & Gri$n 1973; Iwan & Blevins 1974; Sarpkaya & Isaacson 1981;
Khalak & Williamson 1999). The existing data points for A

.!9
are plotted versus S

G
in

Figure 2. A least-squares "t to the natural logarithm of the data points, given by

A
.!9

"exp(!0)938S
G
), (29)

is also plotted in the "gure. Combining equations (19), (23) and (24), we obtain the
oscillating modal lift coe$cient C

L,i
for the ith mode as

C
L,i

"G
0 if <

r,i
(<

r1
or <

r,i
'<

r2
,

2(S
G,i

#aXk`1
S,i

)A
.!9

(S
G,i

)H(<
r,i

)

X2
S,i

if <
r1
4<

r,i
4<

r2
.

(30)

Here A
.!9

(S
G,i

) is de"ned by equation (29), H(<
r,i

) by equation (26), and the relation
between X

S,i
and <

r,i
by equation (25).

3. MODAL EQUATIONS OF MOTION

The structural response of an elastic cylinder to vortex-produced oscillating lift forces is
governed by

L2y

Lt2
#

c

m
s
#m

a

Ly

Lt
#

stiffness

m
s
#m

a

y"ku2
S

D

D
3%&
CQ!

2a
u

S
A
u

S
u

n
B
k Ly

LtD , (31)



Figure 2. Experimental measurements of the modally normalized, maximum structural response amplitude A
.!9

versus the response parameter S
G
. The open symbols are in-air measurements, the closed symbols are in-water

measurements. s and d, from the appendix in Skop & Balasubramanian (1997); h, from Balasubramanian et al.
(2000); j, from Khalak & Williamson (1999); *, least-squares "t to the data, given by equation (29).
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where c is the structural damping per unit length and &&sti!ness'' represents the elastic
properties of the system. Also, D

3%&
denotes the diameter by which the cylinder displacement

is nondimensionalized. We now expand y (x, t) as

y"+
i

C1@2
i

r
i
(t)t

i
(x), (32)

and, following the modal scaling principle, Q(x, t) as

Q"+
i

C1@2
i

q
i
(t)t

i
(x)"+

i

C1@2
i

C
L,i

t
i
(x) sin u

f,i
t. (33)

Here, as previously, u
f,i

/u
n,i
"1 if X

S1
4(u

S
/u

n,i
)4X

S2
and C

L,i
is de"ned by equation

(30). Since C
L,i

"0 if (u
S
/u

n, i
)(X

S1
or (u

S
/u

n, i
)'X

S2
, equation (33) can be recast as

Q"+
i

C1@2
i

C
L,i

t
i
(x) sinu

n,i
t. (34)

Applying equations (32) and (34), (31) becomes

+
i

C1@2
i A

d2r
i

dt2
#2m

i
u

n,i

dr
i

dt
#u2

n,i
r
iBt

i

"ku2
S

D

D
3%&

+
i

C1@2
i GC

L,i
sinu

n,i
t!

2a
u

S
A

u
S

u
n,i
B
k dr

i
dtHt

i
. (35)

In general, k, u
S
, D and C

L,i
can be functions of the distance x along the cylinder because of

nonuniformity of the cylinder or nonuniformity of the #ow. Multiplying equation (35) by t
j
,

integrating over the length ¸ of the cylinder, and employing the orthogonality condition,

P
L

0

t
i
t

j
dx"M

j
d
ij
, (36)
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where the orthogonal weight M
j
is determined from the integration and where d

ij
is the

Kronecker delta, equation (35) is converted into

d2r
j

dt2
#2m

j
u

n,i

dr
j

dt
#u2

n,j
r
j

"

1

M
j
C1@2

j

+
i

C1@2
i P

L

0

ku2
S

D

D
3%&
GCL,i

sinu
n,i

t!
2a
u

S
A

u
S

u
n,i
B
k dr

i
dtHt

i
t
j
dx. (37)

Equation (37) determines the reaction of the modal response factors r
j
to vortex-produced

oscillating lift forces.

4. TAUT CABLES, BEAMS AND MODAL PARTICIPATION

Let us now consider uniform taut cables and uniform beams in uniform #ows. For this
situation, equation (37) for the modal response factor r

j
(or r

i
) becomes

d2r
i

dt2
#2Cmiun,i

#kau
SA

u
S

u
n,i
B
k

D
dr

i
dt

#u2
n,i

r
i
"ku2

S
C

L,i
sinu

n,i
t . (38)

Substituting for C
L,i

from equation (30), the solution for r
i
reduces, by design, to

r
i
"G

0 if <
r,i
(<

r1
or <

r,i
'<

r2
,

!A
.!9

(S
G,i

)H(<
r,i

) cosu
n,t

t if <
r1
4<

r,i
4<

r2
.

(39)

Hence, we have that the ith mode participates in the overall response, given by the
summation in equation (32), if <

r1
4<

r,i
4<

r2
.

For a taut cable, the ith natural frequency f
n,i

can be expressed in terms of the
fundamental natural frequency f

n,1
through the relation f

n,i
"i f

n,1
. Using equation (25)

for <
r,i

, the criterion for the participation of the ith mode in the overall cable response
becomes

i<
r1
4<

r,1
4i<

r2
. (40)

The modal participation diagram for a taut cable in water (<
r1
"5, <

r2
"9) is shown in

Figure 3. In this "gure, the horizontal error bars mark the extent over <
r,1

for which the ith
mode is excited. For 54<

r,1
49, only the "rst mode is excited. For 104<

r,1
415, only the

second mode is excited, while, for 154<
r,1

418, both the second and third modes
participate in the cable response. For 184<

r,1
420, only the third mode is excited, while

the fourth mode joins in for <
r,1

520, and so on. This modal participation behavior is very
similar to that found by Gri$n et al. (1980) in tow tank tests of marine cables.

For a beam, the ith natural frequency f
n,i

can be expressed in terms of the fundamental
natural frequency f

n,1
through the relation f

n,i
"b

i
f
n,1

where the factor b
i
depends on the

beam boundary conditions. The values of b
i
for various beam boundary conditions can be

found in Thomson (1965). Using equation (25) for <
r,i

, the criterion for the participation of
the ith mode in the overall beam response becomes

b
i
<
r1
4<

r,1
4b

i
<
r2

. (41)

The modal participation diagrams for a clamped}clamped beam and a clamped}free beam,
both in water, are shown in Figures 4(a) and (b), respectively. We note that for a clam-
ped}free beam the second mode does not begin to participate until <

r,1
'31)33. This high

value of<
r,1

explains why second mode vibrations have never been observed in cantilevered
beam experiments, at least to the knowledge of the authors.



Figure 3. Modal participation diagram for a taut cable in water.

Figure 4. Modal participation diagrams for beams in water. (a) Clamped}clamped boundary conditions;
(b) clamped}free boundary conditions.
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5. PIVOTED CYLINDERS

We now turn our attention to pivoted cylinders. For a pivoted, rigid cylinder, the only
nonzero mode of vibration is t

1
"x/¸. From equation (13), we have C1@2

2
"(5/3)1@2"1)291

and, from equation (36), M
1
"¸/3. Dropping the extraneous subscripts for ease of notation

and introducing t"q/u
n

and x"¸z where z is a dimensionless distance, the cylinder
response is obtained from equation (32) as

y (z, q)"1)291zr(q). (42)
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The equation satis"ed by the modal response factor r is found from equation (37) as

rK#2Cm#3a P
1

0

D

D
3%&

kXk`1
S

z2dzDrR#r"C3 P
1

0

D

D
3%&

kX2
S
C

L
z2dzD sin q. (43)

Let us denote by X
S,.*/

and X
S,.!9

the minimum and maximum naturally occurring
shedding frequencies along the cylinder. Then, if X

S,.!9
(X

S1
or if X

S,.*/
'X

S2
, we have

from equation (30) that C
L
"0 and, from equation (43), that r"0. Otherwise, there is

a region of shedding along the cylinder where X
S1
4X

S
4X

S3
. We then "nd r"!A cos q,

where

A"

(3/D
3%&

):1
0
DkX2

S
C

L
z2dz

2[m#(3a/D
3%&

):1
0
DkXk`1

S
z2dz]

. (44)

Substituting for C
L

from equation (30), the expression for A can be rewritten as

A"

mq
1
#aq

2
m#aU

, (45)

where q
1
, q

2
and U are de"ned by

q
1
"

3

D
3%&
P

1

0

A
.!9

(S
G
)H (<

r
)Dz2dz , (46)

q
2
"

3

D
3%&
P

1

0

A
.!9

(S
G
)H(<

r
)DkXk`1

S
z2 dz , (47)

and

U"

3

D
3%&
P

1

0

DkXk`1
S

z2 dz . (48)

Balasubramanian et al. (2000, 2001) have conducted wind tunnel experiments on the
vortex-induced vibrations of uniform and tapered, pivoted cylinders in uniform and sheared
#ows. The uniform cylinder results are reported in Balasubramanian et al. (2000) and the
tapered cylinder results are reported in Balasubramanian et al. (2001). The dimensions of
the two cylinders used in the experiments are given in Figure 5. The cylinders were
constructed from wood having a density of 540 kg/m3. The tapered cylinder could be
pivoted at either end. Two linearly sheared #ows could be generated in the wind tunnel. One
of these #ows increased along the length of the cylinder and was given, in meters per second
(m/s), by

<"<
0
(1#0)88¸z), (49)

where <
0

denotes the value of the #ow velocity at z"0. The second #ow decreased along
the length of the cylinder and was given, also in m/s, by

<"<
0
(1!0)54¸z). (50)

Balasubramanian et al. present their results as plots of the peak-to-peak tip displacement of
the cylinder 2y

5*1
versus the reference reduced velocity <

r,3%&
"<

0)5
/( f

n
D

3%&
), where

<0)5"<(z"0)5). The tip displacement is the amplitude of the cylinder motion at z"1 and,
from equations (42) and (45), is determined as

y
5*1
"1)291

mq
1
#aq

2
m#aU

. (51)



Figure 5. Schematics of the two cylinders used in the vortex-excited vibration experiments of Balasubramanian
et al. (2000, 2001).
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For our calculations, the value of k is taken as k"2, the minimum allowable value. We
will demonstrate shortly that the value selected for k has little in#uence on the results. The
integrals in equations (46), (47) and (48) are evaluated using a 100-point trapezoidal
integration. Since the experiments were performed in air, we also have <

r1
"5, <

r2
"8 and

<
rp
"6.

5.1. UNIFORM CYLINDER

The uniform cylinder had a length ¸"0)6016 m, a diameter D"D
3%&
"0)05715 m, a natu-

ral frequency f
n
"20 Hz and a damping ratio m"0)0031. The predicted and measured

responses for the uniform #ow case are shown in Figure 6. For this situation, the predicted
response is the same for all values of the stall parameter a. From this "gure, we note that the
predicted and measured maximum values of 2y

5*1
are virtually identical. The predicted

location of the maximum value is at <
r,3%&

"6, which is 11% higher than the measured
location of <

r,3%&
+5)4. This 11% di!erence is well within the scatter in the data from which

<
rp

was selected. The principle variance between the predicted and measured responses is
in the extent of the lock-in region. The predicted lock-in region ranges from <

r,3%&
"5 to

8 while the measured lock-in region ranges from <
r,3%&

"4)7 to 5)6. The measured lock-in
region is somewhat narrower than is usually observed (Sarpkaya and Isaacson 1981).

The predicted and measured responses of the uniform cylinder for the linearly sheared
#ow cases are shown in Figure 7. The predicted response is shown for values of the stall
parameter a"0, 1 and 1000. We note that, at least for the cases represented in Figure 7, the
predicted response is relatively insensitive to the value of a. Here, we discuss the results for



Figure 6. Predicted and measured responses for a uniform pivoted cylinder in a uniform #ow. s, measurements;
**, predicted response for all values of a.

Figure 7. Predicted and measured responses for a uniform pivoted cylinder in linearly sheared #ows. s,
measurements taken with <

r,3%&
increasing; d, measurements taken with <

r,3%&
decreasing; full curves, predicted

responses for various values of a: **, a"0; ) ) ) ), a"1; } } }, a"1000. (a) Minimum #ow velocity at pivot; (b)
maximum #ow velocity at pivot.
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a"1. For the #ow velocity increasing along the length, the predicted maximum response is
2y

5*1
"0)31 at <

r,3%&
"5)44 and the lock-in region ranges from <

r,3%&
"4)3 to 8)0. The

measured values are 2y
5*1
"0)35 at<

r,3%&
"5)47 with lock-in ranging from<

r,3%&
"5)0 to 7)4.

The predicted maximum response is 11% less than the measured one. Again, the principle
variance between the predicted and measured responses is in the extent of the lock-in region
with the predicted lock-in region being wider than the measured one. For the #ow velocity
decreasing along the length, the predicted maximum response is 2y

5*1
"0)29 at <

r,3%&
"6)7

and the lock-in region ranges from <
r,3%&

"5)0 to 9)0. The measured values are 2y
5*1
"0)24

at <
r,3%&

"5)8 with lock-in ranging from <
r,3%&

"5)0 to 7)0. The predicted maximum is 20%
higher than the measured one and its location is 16% higher. The major variance is again in
the width of the lock-in region.



Figure 8. Predicted and measured responses for a tapered pivoted cylinder in a uniform #ow. s, measurements
taken with <

r,3%&
increasing; d, measurements taken with <

r,3%&
decreasing; full curves, predicted responses for

various values of a: **, a"0; ) ) ) ), a"1; } } }, a"1000. (a) Pivot at small diameter end; (b) pivot at large
diameter end.
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5.2. TAPERED CYLINDERS IN UNIFORM FLOWS

The tapered cylinder had a length ¸"0)603 m, a maximum diameter D
.!9

"0)05715 m
and a minimum diameter, also used as the reference diameter, D

.*/
"D

3%&
"0)0381 m. The

natural frequency when the small diameter end was pivoted was f
n
"21 Hz. For the large

diameter end pivoted, the natural frequency was f
n
"22 Hz. For both situations, the

damping ratio was m"0)0022.
The predicted and measured responses for the uniform #ow case are shown in Figure 8.

Figure 8(a) corresponds to the cylinder being pivoted at the small diameter end, Figure 8(b)
to the pivot being at the large diameter end. The predicted response is shown for values
of the stall parameter a"0, 1 and 1000. We note that, for the case represented in
Figure 8(a), the predicted response becomes sensitive to the value of a. We again discuss the
results for a"1. For the cylinder pivoted at its small diameter end, the predicted maximum
response is 2y

5*1
"0)68 at <

r,3%&
"8)3 and the lock-in region ranges from <

r,3%&
"6)0 to 11)0.

For the cylinder pivoted at its large diameter end, the predicted maximum response is
2y

5*1
"0)49 at <

r,3%&
"6)7 and the lock-in region ranges from <

r,3%&
"5)0 to 10.0. Both

predicted maximum responses are about 25% larger than the measured ones. The locations
of the predicted maximum responses are approximately 6% lower than the measured ones.
In each instance, the predicted width of the lock-in region is somewhat greater than the
measured width.

5.3. TAPERED CYLINDERS IN LINEARLY SHEARED FLOWS

The results obtained by Balasubramanian et al. (2001) for the response of tapered
cylinders in linearly sheared #ows are not as reliable as the results discussed in Sections 5.1
and 5.2. They remark that the damping displayed some nonlinear characteristics and
that it was di$cult to select an appropriate value for the damping. They attri-
bute this changed behavior to a possible deterioration of the air bearing at the cylinder
pivot.



Figure 9. Predicted and measured responses for a tapered pivoted cylinder, with its small end pivoted, in linearly
sheared #ows. s, measurements taken with <

r,3%&
increasing; d, measurements taken with <

r,3%&
decreasing;**,

predicted responses for a"1. (a) Minimum #ow velocity at pivot, m"0)0027; (b) maximum #ow velocity at pivot,
m"0)0021.
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Hence, to compare the predictions of the inverse-direct method with the measured
responses, we take a di!erent approach. Namely, we vary the value of the damping m so that
the predicted maximum response is identical with the measured maximum response and
compare the other characteristics of the response. All calculations are done with the stall
parameter a set to a"1.

The predicted and measured responses when the cylinder is pivoted at its small dia-
meter end are shown in Figure 9. Figure 9(a) corresponds to the #ow velocity increas-
ing along the length of the cylinder, Figure 9(b) corresponds to the #ow velocity decreasing
along the length. The value of m used to generate Figure 9(a) is 0)0027, while that
used to generate Figure 9(b) is 0.0021. For the #ow velocity increasing along the length
of the cylinder, the predicted maximum response is at <

r,3%&
"7)5 which is 9% higher

than the measured location. The predicted lock-in region is narrower than the meas-
ured one. For the #ow velocity decreasing along the length of the cylinder, the
predicted maximum response is at <

r,3%&
"9)5 which is 20% higher than the meas-

ured location. The predicted lock-in region is now substantially wider than the measured
one.

The predicted and measured responses when the cylinder is pivoted at its large diameter
end are shown in Figure 10. Figure 10(a) corresponds to the #ow velocity increasing along
the length of cylinder, Figure 10(b) corresponds to the #ow velocity decreasing along the
length. The value of m used to generate Figure 10(a) is 0)0023, while that used to generate
Figure 10(b) is 0)0027. For the #ow velocity increasing along the length of the cylinder, the
predicted maximum response is at <

r,3%&
"5)7 which is 5% lower than the measured

location. The predicted and measured lock-in regions are quite similar. For the #ow velocity
decreasing along the length of the cylinder, the predicted maximum response is at
<
r,3%&

"7)5. The measurements show a signi"cant cylinder response only at <
r,3%&

"5)7.

5.4. DISCUSSION

The agreement between the predictions of the inverse-direct method and the experimental
data of Balasubramanian et al. (2000, 2001) for vortex-induced vibrations of uniform and



Figure 10. Predicted and measured responses for a tapered pivoted cylinder, with its large end pivoted, in
linearly sheared #ows. s, measurements taken with <

r,3%&
increasing; d, measurements taken with<

r,3%&
decreasing;

**, predicted responses for a"1. (a) Minimum #ow velocity at pivot, m"0)0023; (b) maximum #ow velocity at
pivot, m"0)0027.
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tapered pivoted cylinders in uniform and linearly sheared #ows is quite good. The predicted
peak vibration amplitudes range from !11% to #25% of the measured ones. This error is
well within the bounds of previous results established for uniform cylinders in uniform
#ows. Referring to Figure 2, the values of 2A

.!9
for a given S

G
frequently deviate by

$100% or more from the least-squares "t to the data. The predicted #ow velocities at
which the peak amplitudes occur are within !6% to #20% of the measured #ow
velocities. This error is also within the bounds of previous results for uniform cylinders in
uniform #ows. Referring to the appendix in Skop & Balasubramanian (1997), the values of
<
rp

in air range from 5)25 to 6)60 with a mean of 6)0. The spread about the mean is
then 22%. The main discrepancy between the predictions and the measured data is in the
extent of the lock-in regions, the predicted extents tending to be somewhat wider than the
measured ones. However, we have already remarked that, for the uniform cylinder in
uniform #ow, the measured lock-in region is somewhat narrower than is usually observed.

5.5. INFLUENCE OF k

The predicted responses of the uniform pivoted cylinder for k"4 and values of the
stall parameter a"0 and 1000 are shown in Figure 11, also shown is the baseline response
for k"2 and a"1. The responses shown are for linearly sheared #ows. Figure 11(a)
corresponds to the #ow velocity increasing along the length of the cylinder, Figure 11(b) to
the #ow velocity decreasing along the length. We note that the baseline case is bounded by
the k"4 cases for both #ow conditions. The same situation holds for other values of k and
for #ows over tapered cylinders. Hence, for any value of k, we can always "nd a value of
a that will give nearly identical results to the k"2 results. Thus, the use of k"2 is justi"ed.

6. CONCLUSIONS

A new method, the inverse-direct method, has been developed for predicting the vortex-
induced vibrations of uniform and nonuniform cylinders in uniform and nonuniform #ows.
In the inverse portion of the method, the #uid force per unit length acting on a uniform



Figure 11. In#uence of k on the predicted responses of a uniform pivoted cylinder in linearly sheared #ows.
Results are shown for k"4 with a"0 and 1000 and for the baseline case k"2 with a"1. (a) Minimum #ow
velocity at pivot; (b) maximum #ow velocity at pivot:**, k"2, a"1; ) ) ) ) ), k"4, a"0; } } }, k"4, a"1000.
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cylinder in a uniform #ow is determined from known experimental results. In the direct
portion of the method, this force is applied locally along the cylinder.

We have shown that the inverse-direct method provides an explanation of the modal
coupling patterns found experimentally for taut cables and beams in uniform #ows. The
predictions of the method also compare favorably with experimental data for the vortex-
induced vibrations of uniform and tapered pivoted cylinders in uniform and sheared #ows.
Improvements in the comparisons could probably be achieved by changing the parameters
or shape of the shape function H(<

r,i
). However, this is not merited at present because of the

scatter in the data for uniform #ows over uniform cylinders and because of the fact that the
experiments of Balasubramanian et al. (2000, 2001) were the "rst of their kind.

Overall, the inverse-direct method is easier to apply and yields more accurate predictions
than the previously used nonlinear oscillator models.
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